Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Semi-insulating InP:Fe for buried-heterostructure strain-compensated quantum-cascade lasers grown by gas-source molecular-beam epitaxy

Identifieur interne : 000558 ( Main/Repository ); précédent : 000557; suivant : 000559

Semi-insulating InP:Fe for buried-heterostructure strain-compensated quantum-cascade lasers grown by gas-source molecular-beam epitaxy

Auteurs : RBID : Pascal:13-0288268

Descripteurs français

English descriptors

Abstract

We describe the realization of buried-heterostructure strain-compensated quantum-cascade lasers that incorporate a very high degree of internal strain and are grown on InP substrates using gas-source molecular-beam epitaxy (GSMBE). The active region of the lasers contains AlAs layers up to 1.6 nm thick with 3.7% tensile strain; restricting any post-growth processing to temperatures below 600 C to avoid relaxation. We demonstrate that buried-heterostructure devices can be realized by using GSMBE to over-grow the etched laser ridge with insulating InP:Fe at temperatures low enough to preserve the crystal quality of the strain-compensated active region. Two distinct growth techniques are described, both leading to successful device realization: selective regrowth at 550 °C and non-selective regrowth at 470 C. The resulting buried-heterostructure lasers are compared to a reference laser from the same wafer, but with SiO2 insulation; all three have very similar threshold current densities, operational thermal stability, and waveguide losses.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0288268

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Semi-insulating InP:Fe for buried-heterostructure strain-compensated quantum-cascade lasers grown by gas-source molecular-beam epitaxy</title>
<author>
<name sortKey="Semtsiv, M P" uniqKey="Semtsiv M">M. P. Semtsiv</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Aleksandrova, A" uniqKey="Aleksandrova A">A. Aleksandrova</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Elagin, M" uniqKey="Elagin M">M. Elagin</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Monastyrskyi, G" uniqKey="Monastyrskyi G">G. Monastyrskyi</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kischkat, J F" uniqKey="Kischkat J">J.-F. Kischkat</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Flores, Y V" uniqKey="Flores Y">Y. V. Flores</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Masselink, W T" uniqKey="Masselink W">W. T. Masselink</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0288268</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0288268 INIST</idno>
<idno type="RBID">Pascal:13-0288268</idno>
<idno type="wicri:Area/Main/Corpus">000829</idno>
<idno type="wicri:Area/Main/Repository">000558</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium arsenides</term>
<term>Buried heterostructures</term>
<term>Calcium nitride</term>
<term>Crystal perfection</term>
<term>Current density</term>
<term>GSMBE method</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium phosphide</term>
<term>Internal strains</term>
<term>Iron</term>
<term>Molecular beam epitaxy</term>
<term>Quantum cascade laser</term>
<term>Relaxation</term>
<term>Semiconductor heterojunctions</term>
<term>Semiconductor lasers</term>
<term>Silicon oxides</term>
<term>Tensile stress</term>
<term>Thermal properties</term>
<term>Thermal stability</term>
<term>Threshold current</term>
<term>Wafers</term>
<term>Waveguides</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Hétérostructure enterrée</term>
<term>Laser cascade quantique</term>
<term>Laser semiconducteur</term>
<term>Méthode GSMBE</term>
<term>Epitaxie jet moléculaire</term>
<term>Déformation interne</term>
<term>Contrainte traction</term>
<term>Mécanisme croissance</term>
<term>Relaxation</term>
<term>Perfection cristalline</term>
<term>Pastille électronique</term>
<term>Courant seuil</term>
<term>Phosphure d'indium</term>
<term>Fer</term>
<term>Arséniure d'aluminium</term>
<term>Nitrure de calcium</term>
<term>Oxyde de silicium</term>
<term>Densité courant</term>
<term>Propriété thermique</term>
<term>Stabilité thermique</term>
<term>Guide onde</term>
<term>Hétérojonction semiconducteur</term>
<term>InP</term>
<term>Substrat indium phosphure</term>
<term>Substrat InP</term>
<term>AlAs</term>
<term>SiO2</term>
<term>8115H</term>
<term>8110A</term>
<term>6540D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Fer</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We describe the realization of buried-heterostructure strain-compensated quantum-cascade lasers that incorporate a very high degree of internal strain and are grown on InP substrates using gas-source molecular-beam epitaxy (GSMBE). The active region of the lasers contains AlAs layers up to 1.6 nm thick with 3.7% tensile strain; restricting any post-growth processing to temperatures below 600 C to avoid relaxation. We demonstrate that buried-heterostructure devices can be realized by using GSMBE to over-grow the etched laser ridge with insulating InP:Fe at temperatures low enough to preserve the crystal quality of the strain-compensated active region. Two distinct growth techniques are described, both leading to successful device realization: selective regrowth at 550 °C and non-selective regrowth at 470 C. The resulting buried-heterostructure lasers are compared to a reference laser from the same wafer, but with SiO
<sub>2</sub>
insulation; all three have very similar threshold current densities, operational thermal stability, and waveguide losses.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>378</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Semi-insulating InP:Fe for buried-heterostructure strain-compensated quantum-cascade lasers grown by gas-source molecular-beam epitaxy</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 17th International Conference on Molecular Beam Epitaxy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>SEMTSIV (M. P.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ALEKSANDROVA (A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ELAGIN (M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MONASTYRSKYI (G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>KISCHKAT (J.-F.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FLORES (Y. V.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>MASSELINK (W. T.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>AKIMOTO (Katzuhiro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUEMASU (Takashi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>OKUMURA (Hajime)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Physics, Humboldt University Berlin, Newtonstrasse 15</s1>
<s2>12489 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Tsukuba</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>125-128</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000506550350320</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0288268</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We describe the realization of buried-heterostructure strain-compensated quantum-cascade lasers that incorporate a very high degree of internal strain and are grown on InP substrates using gas-source molecular-beam epitaxy (GSMBE). The active region of the lasers contains AlAs layers up to 1.6 nm thick with 3.7% tensile strain; restricting any post-growth processing to temperatures below 600 C to avoid relaxation. We demonstrate that buried-heterostructure devices can be realized by using GSMBE to over-grow the etched laser ridge with insulating InP:Fe at temperatures low enough to preserve the crystal quality of the strain-compensated active region. Two distinct growth techniques are described, both leading to successful device realization: selective regrowth at 550 °C and non-selective regrowth at 470 C. The resulting buried-heterostructure lasers are compared to a reference laser from the same wafer, but with SiO
<sub>2</sub>
insulation; all three have very similar threshold current densities, operational thermal stability, and waveguide losses.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60E40D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Hétérostructure enterrée</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Buried heterostructures</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Laser cascade quantique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Quantum cascade laser</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode GSMBE</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>GSMBE method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método GSMBE</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Déformation interne</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Internal strains</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Contrainte traction</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Tensile stress</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Tensión traccíon</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Relaxation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Relaxation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Perfection cristalline</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Crystal perfection</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Perfección cristalina</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Pastille électronique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Wafers</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Courant seuil</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Threshold current</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Fer</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Iron</s0>
<s2>NC</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Nitrure de calcium</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Calcium nitride</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Calcio nitruro</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>29</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Current density</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>30</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Stabilité thermique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Thermal stability</s0>
<s5>31</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Guide onde</s0>
<s5>32</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Waveguides</s0>
<s5>32</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
<s5>33</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
<s5>33</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Substrat indium phosphure</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>Substrat InP</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>AlAs</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>SiO2</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="32" i2="3" l="FRE">
<s0>6540D</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>MBE2012 International Conference on Molecular Beam Epitaxy</s1>
<s2>17</s2>
<s3>Nara JPN</s3>
<s4>2012-09-23</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000558 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000558 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0288268
   |texte=   Semi-insulating InP:Fe for buried-heterostructure strain-compensated quantum-cascade lasers grown by gas-source molecular-beam epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024